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e Proposed a reformulation of Max-Cut problem that is suitable for
using quantum and classical algorithms jointly to solve larger-scale
Max-Cut problems.

* Devised a framework that couples QAOA with a classical approxima-
tion algorithm to solve Max-Cut problem.

* Analytically confirmed that if QAOA has a provable higher approxi-
mation ratio than classical algorithms, then the quantum advantage
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algorithm and achieved better results than previous methods.
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Abstract

Maximum cut (Max-Cut) problem is one of the most important combina-
torial optimization problems because of its various applications in real life,
and recently Quantum Approximate Optimization Algorithm (QAOA) has
been widely employed to solve it. However, as the size of the problem in-
creases, the number of qubits required will become larger. With the aim of
saving qubits, we propose a coupling framework for designing QAOA cir-
cuits to solve larger-scale Max-Cut problems with conditional performance
guarantee and nice numerical performance. To do this, we introduce a no-
val reformulation of the Max-Cut problem, and the problem will be partly
solved using a classical approximation algorithm which is embedded into
the QAOA circuit. Notably, our formalism makes it possible to derive an
approximation guarantee theoretically assuming the approximation ratio
of the classical algorithm and QAOA. The analytical results show that if
QAOA has a provable quantum advantage, namely a better approximation
ration than the classical algorithms, then the quantum advantage can be
extended to problems with sizes much beyond available qubit numbers.
Furthermore, we design a heuristic approach that fits in our framework
and perform sufficient numerical experiments, where we solve Max-Cut on
various 24-vertex Erdds-Rényi graphs. Our framework only consumes 18
qubits and achieves 0.9950 approximation ratio on average, which outper-
forms the previous methods showing 0.9778 (quantum algorithm using the
same number of qubits) and 0.9643 (classical algorithm). The numerical
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results indicate our well-designed quantum-classical coupling framework
gives satisfactory approximation ratios while reducing the qubit cost, al-
lowing us to extend the potential quantum advantage of QAOA to larger-
scale Max-Cut problems, which sheds light on more potential computing
power of NISQ devices.

Keywords: variational quantum algorithm, quantum approximate
optimization algorithm, Max-Cut, quantum resources

1. Introduction

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid
quantum-classical approach for combinatorial optimization problems, pro-
posed by Farhi et al. [1]l. Here, hybrid means that QAOA is composed
of a parameterized circuit (ansatz) whose measurement outcome can be
mapped to the value of the objective function, and the parameters are
updated with a classical optimizer that maximizes (or minimizes) the ex-
pected value of the objective function. Delegating some computational pro-
cesses to the classical domain grants QAOA a comparatively shallower cir-
cuit, making it more applicable to NISQ [2] (3], 4] devices. Also, as the circuit
for QAOA is a parameterized one, it is easier to be modified and adapted
to different types of quantum computers [5]. Moreover, the quantum gates
required to implement a QAOA circuit are comparatively simple. For in-
stance, the QAOA circuit for solving the maximum cut (Max-Cut) problem
only comprises CNOT and single qubit rotation gates, which are much more
friendly to physical realization than Toffoli gates, etc. Therefore, QAOA is
more compatible with NISQ devices than other complex quantum algo-
rithms such as Shor’s algorithm [6]], Grover’s algorithm [7].

Since its introduction, QAOA has attracted considerable theoretical and
experimental attention [8], 9] 10} 11} 12} [13]. Starting from the original
paper of QAOA [1]], Max-Cut problem has always been used as a good ex-
ample to demonstrate QAOA’s capabilities. Max-Cut problem is a classical
NP-hard problem in graph theory and has applications in statistical physics
and integrated circuit design. Furthermore, as a combinatorial optimiza-
tion problem with simple constraints and objective function, solutions to
Max-Cut problem can be potentially generalized to other hard optimization
problems [[14]. This paper also investigates how to solve the Max-Cut prob-
lem with QAOA. When using QAOA to solve Max-Cut problem on a graph,
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the number of qubits required is usually equal to the number of vertices in
this graph. But the number of available qubits seems to be constrained in
the near future. First of all, the qubits are quite expensive currently, at a
cost of tens of thousands of dollars per qubit [15] [16]. What’s worse, the
scaling of qubit count is a big challenge, as technologies used to realize
quantum computers (ion traps, superconductors, etc) have strong limita-
tions on the scaling of the number of qubits [17, 18], [19, 20]. Thus, it is
a good question whether we can reduce the number of qubits required to
deal with a specific problem instance. We thus works on this direction, and
we propose a coupling framework to solve Max-Cut problem with fewer
qubits.

1.1. Related work

With the aim of solving Max-Cut with fewer qubits, efforts have been
made in [21} 22]], where the authors split the graph into several subgraphs
and solve Max-Cut on the subgraphs independently, and then combine the
cuts of subgraphs into a global cut. In the combination step, both meth-
ods only keep a small amount of candidate solutions, determined by their
optimality inside the subgraph, and then try to select an optimal combina-
tion of the kept candidate solutions in subgraphs to maximize the overall
cut. These methods allow for using an arbitrary small number of qubits for
a given problem instance, by recursively partitioning the graph until the
number of vertices is smaller than the number of available qubits. More-
over, for graphs innately composed of several dense subgraphs connected
by a few edges, such splitting and combining strategy is reasonable for the
cut is largely determined by edges inside the dense subgraphs, and the
edges joining the subgraphs are relatively insignificant. But for general
cases, Max-Cut is not a problem with much locality — a cut may not be so
good in a subgraph, but can be a part of a nice solution for the whole graph.
Therefore, due to the existence of such bold greedy reduction that discards
locally bad solutions without much analysis, it is hard to mathematically
derive a strong performance guarantee for such methods.

Considering the issues of previous works mentioned above, we propose
a method that incorporates a classical approximation algorithm as part of
the QAOA circuit, leaving some vertices and edges to be handled by clas-
sical computation. By combining quantum and classical computation, our
method applies to more general graph instances and achieves better numer-
ical results than previous works that only used quantum computation. In
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addition to numerical results, we also derive a formula that lower bounds
the performance guarantee with some mathematical analysis, assuming the
approximation ratio of the classical algorithm and the quantum approxi-
mate optimization. Moreover, as we want to keep the overall method at
least better than the classical one, we also analyze the portion of qubits
that can be saved while this condition holds.

This paper is organized as follows. reviews the definition
and computational hardness of Max-Cut, along with the overall scheme of
QAOA and the QAOA circuit for Max-Cut. presents a general
framework of our method and analyzes its performance. dis-
cusses the implementation of the classical algorithm required in this frame-
work and gives the simulation results compared with previous works, and
Section 5| concludes with a summary of our results and some further dis-
cussions.

2. Preliminaries

This section reviews the definition of the maximum cut (Max-Cut) prob-
lem and the structure of QAOA, which are fundamental to the following
parts.

2.1. Max-Cut problem

As a well-known NP-hard problem, Max-Cut problem is described as
follows:

Problem: Maximum Cut
Input: An undirected graph G = (V,E).

Output:
max [(u,v) € E], (D
Scv u;gve;—S

where (S,V — ) is a partition of V.

Note that the output can also be alternatively defined as

max Z [o(u) # o (v)], (2)

o:V—{0,1} (uv)€E

where o is a binary coloring of vertices. Note that such a coloring can be
represented using a binary string s € {0,1}", where s; denotes the color of
the i-th vertex.



Kopt Assumption

~ .878 [26] P#NP
(Goemans-Williamson algorithm) unique games conjecture
~ .941 [130} 31]] P # NP

Table 1: Approximation ratio upper bound, denoted by «,,, for classical algorithms on
Max-Cut.

No polynomial time algorithm solves Max-Cut accurately, so efficient
algorithms proposed to solve Max-Cut problem only give approximate so-
lutions [23] 24} 25! 126, 27, 28], [29]. Usually, these approaches have been
benchmarked by the approximation ratio of obtained solutions, which is
the value of the obtained solution divided by the optimal solution. In
classical computation, the approximation ratio of any efficient algorithm
is upper bounded under currently unfalsified complexity conjectures, see
However, it is worth mentioning that the upper bounds apply to
the worst-case approximation ratio on any graph. In other words, for any
efficient classical algorithm, there will be an infinite set of hard cases where
it cannot do better than a,,. But in average cases, classical algorithms
usually give much better results (with an approximation ratio higher than
.878). For example, the best-known algorithm for general cases, Goemans-
Williamson algorithm, achieves no less than .878 on any graph, but on
Erdés-Rényi random graphs, it usually shows over .9-approximation in ex-
periments. So the reader might not be confused when seeing such cases,
and when comparing a quantum algorithm with classical ones numerically,
we need to do case-by-case comparisons, as indicated in [32]. Now we
describe two classical algorithms which will be mentioned in the following
sections.

Naive random algorithm. For a graph G, we independently assign each ver-
tex a random color. This results in a random algorithm with % approxi-
mation ratio, namely the expected output is at least half of the optimal
solution.

Local search. Alocal search algorithm starts from an arbitrary feasible solu-
tion to the problem and incrementally modifies the solution until reaching
a local optimum. For the case of Max-Cut, a local search algorithm might



look like |Algorithm 2| In the pseudo code, S A {u} means symmetric dif-
ference of S and {u}, i.e., removing u from Sif u € Soradd uto Sif u € S.

The procedure is bound to stop in polynomial iterations and guarantees to
give a solution with at least % approximation ratio. Though local search

Algorithm 1: Naive Max-Cut algorithm
Data: A graph G = (V,E).
Result: A cut that achieves expected
%-approximation.

Algorithm 2: Local search for Max-Cut
Data: A graph G = (V,E).
Result: A cut that achieves 1-approximation.

S 0 S < So; /* initial cut solution */
forucV do while Ju,cut(S A {u}) > cut(S) do

‘ u is added to § with % probability; | dS RERUE
end en

return (S,V —S);

return (S,V —S);

does not theoretically ensure a high approximation ratio, it does demon-
strate good performance in experiments. Moreover, it is quite simple and
scalable, so in later sections, we implement our heuristic method on top of
it.

2.2. QAOA

Besides the classical algorithms for Max-Cut problem, some QAOA-based
quantum algorithms have been introduced recently. QAOA is a quantum-
classical hybrid method for combinatorial optimization, solving problems
that look as follows [1]]:

Given C: {0,1}" — R, find max C(s).
s€{0,1}7

This cost function C can be encoded into a problem Hamiltonian

He= Y, C(s)ls)(sl, 3)

se{0,1}"

and in QAOA, the combinatorial optimization problems are reformulated
into approximately finding the ground state and ground energy of —H,
which is done with a hybrid optimization procedure. Firstly, prepare the
parameterized unitary transformation, which can generate the following
state when operating on |+)“", i.e.,

p
18,7) = | [ exp(—iBcHp) exp(—inHc) | |+)°", 4)
k=1



with Hg =Y" | X;, p being the number of layers for QAOA and 3,~ € [0,27)”
being parameter vectors. Secondly, update the parameters 3, using a
classical optimizer to maximize the expected measurement outcome,

(B 7" = ar%maxw,v\flclﬁ,w- (5)
Y

Thus, the approximation ratio will be

<ﬁ*77*|HC’ﬂ*77*> — minsC(s)
max C(s) —msinC(s)

(6)

Before explaining how to realize the above process in the language of
quantum circuits, it is necessary to review some elementary quantum gates
we will use in our paper, including 1-qubit gates Ry (rotation along X -axis),
Rz (rotation along Z-axis), H (Hadamard gate),

cos(8/2)  —isin(6/2
RX(G)—(_iSir(l(g/%) cos(g/2))>7

—i02) g
Rz(6) :< 0 ei(9/2)>,
I (1 1
"= (1 —1)’

(where 6 € R is a parameter denoting rotation angle) and 2-qubit controlled-

NOT gate along with its circuit notation [Figure 1(a)

1 000
0100
CNOT = 0 001
0010

Now we show how to construct the unitaries above required by QAOA.
The exp(—iBiHp) part is straightforward as it is simply a layer of Rx ()
gates. Now we consider exp(—iyHc). When solving Max-Cut problem with
QAOA, we use an s € {0,1}" to encode the coloring of vertices, and C(s)
would be the number of edges whose endpoints are colored differently.
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u-th qubit

@) —4— la)

b) —®— |b®a) v-th qubit —&— Rz(—%) —&—
(a) (b)

Figure 1: (a) Circuit notation of CNOT gate, which means the target qubit (marked with
@) is flipped iff the control qubit (marked with e) is in state |1). (b) Adding a phase factor
depending on whether two qubits u, v share the same value.

And for such C(s), exp(—iyHc) can be implemented by applying the circuit
shown in for all edges (u,v). Apparently, the circuit in
add phase factors depending on whether x-th and the y-th qubits
are in different states, and the phase factors thus accumulate to the whole
cut size (up to a global phase factor). Actually, Max-Cut problem has an
equivalent Ising formulation

Y, z.z,. (7)

(u,v)EE

The authors of [1] have proved that the approximation ratio approaches
1 when p tends to infinity. But with moderate circuit depth, QAOA hasn’t
been proved theoretically to achieve a better approximation ratio than best-
known classical algorithms. However, in numerical experiments, QAOA
does seem to show nice performance in shallow circuit depth. For example,
Crooks [32] shows for Erdés-Rényi graphs with up to 17 vertices, QAOA
significantly outperforms Goemans-Williamson algorithm when the hyper-
parameter p grows to 8, and the approximation ratio is very close to 1 when
p is set 32. Therefore, it is promising to achieve quantum advantage with
QAOA, namely, obtain better cut solutions on certain problem instances
than efficient classical algorithms. In the following sections, we describe
our coupling framework which embeds a classical approximation algorithm
with QAOA which will be able to use fewer qubits to solve Max-Cut prob-
lem. We demonstrate its performance theoretically and numerically. Due
to the good numerical performance of QAOA, our framework indeed gives
good results in numerical experiments and outperforms currently the best-
known classical algorithm.
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Figure 2: An example of graph splitting. (a) The original graph. (b) Select a dense graph
indicated by blue vertices. (c) Split the graph and use different methods on different parts.
It is clear from (c) that the blue subgraph is comparatively denser.

3. Theoretical results

Despite the proof of quantum advantage for the original QAOA referred
in [1] being hard, for a new coupling framework below we can give some
theoretical results assuming the approximation ratio of QAOA is known.
Firstly we give a reformulation of Max-Cut and a new variant of the Max-
Cut that leads to our new framework. Then we present details of our frame-
work and give some performance analysis.

3.1. Framework description

When given a Max-Cut problem, if we use QAOA to solve it, the number
of qubits required is equal to the number of vertices in the graph. There-
fore, to solve it with fewer qubits, we need to reduce the number of vertices
in the graph by selecting a subgraph and solving Max-Cut with QAOA on
it, and for the remaining part we use classical algorithms. To formalize this
process, we define the notations in An exemplary demonstration
of this process can be seen in [Figure 2

Now suppose we select a subgraph of size ny. Once we fix a coloring
so € {0, 1}"0 of Vj, the cut size in E| is fixed, and we denote it with CUTq(sp).
Now, choosing different coloring s; € {0,1}" of V; will result in different
cut sizes in the remaining edges of the graph (or formally, E — Ej), defined
as

REM(sg,51) = CUTo1(s0,51) + CUT(s1), 8)

where CUTg;(so,s1) denotes the number of cut edges in Ep;, and CUT;(s;)
denotes the number of cut edges in E;. For each s, there will be an optimal



Symbol | Meaning

Go = (Vo,Ep) | the subgraph we select

the remaining vertices

the number of remaining vertices
the induced subgraph by V;

Egy = E\ (EgUE]) | the edges between V and V,

Table 2: Notations for the graph splitting.

s1 that maximizes the size of the cut in the remaining edges of the graph,
and we define this maximum as

OPT-REM(sp) = ) er?oai(}"l REM(s0,S1)- )
1 s

With the definitions above, Max-Cut problem is now reformulated into

MAX-CUT(G) = max {CUTo(so) + OPT-REM(sp) }. (10)
so€{0,1}"0

Our framework will rely on a classical algorithm that approximately com-
putes OPT-REM(sg), which will be used in the QAOA circuit to solve (10).
In the following text, we will use OPT-REM’(sp) to denote the approximate
solution of OPT-REM(sg), and suppose we have access to the classical algo-
rithm as an oracle shown below (more discussions on this classical oracle
are given in|Section 4]),

Ooprrew : 150)]0)%" — [s0)|OPT-REM’(50) ). (11)

Here, we need to store the largest possible OPT-REM’(sp) on the second ¢-
qubit register, thus ¢ should be set {log(|E| - |Eo|)-‘ € O(logn).
Remember in QAOA, to optimize maxc g 1}»C(s), we need to construct
the problem unitary, which implements
Is) > e T CE) ). (12)

Accordingly, here, a problem unitary for (10) would be composed of two
steps:

tepl _:..
|S0> step e ik CUTo(s0) |S0> (13)
step 2 1T OPT-REM’(s9) | o —i% CUTo(s0) 150). (14)
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Step 1. The unitary |sq) — e~ % CUTo(%)|50) is the same as that in the original
QAOA circuit for Max-Cut, and can be implemented by applying the circuit

Figure 1(b)|for all (u,v) € Ep.

o) — Re(—1-2°) f— ity
1) — Rz<—7k'2l> — e ien 2!
ler_t) — Rz<fyk-2”‘l) L it 2 g, )

Figure 3: The implementation of phase oracle.

Step 2. With the oracle defined in (11)), we can implement the required
phase oracle

OPT-REM’

|50) |OPT-REM’(50) ) &1 (50) |50 |OPT-REM’(50) ),

using only rotation gates, as shown in And the overall circuit
requires ng + {log(|E| - ‘EOM = ng+ O(logn) qubits.

Finally, we discuss what kind of subgraph should be selected and solved
using QAOA. When solving the Max-Cut problem on a graph, clearly a
denser subgraph tends to have a larger impact on the overall solution.
Moreover, generally speaking, Max-Cut on dense graphs is harder than it is
on sparse graphs. This intuition is supported by the following facts:

* Planar graph, being sparse, is the most well-known class of graphs
where Max-Cut can be solved in polynomial time [33].

e There are parameterized and exact algorithms for Max-Cut whose
running times are positively correlated with graph density. For exam-
ple, 2(1=(2/A)n . poly(n) where A is the maximum degree of all vertices
[34], 2 -poly(n) where k is the number of crossings in a graph’s draw-
ing (meaning that when a graph is drawn, there will be k crossings
between the edges)[|35]. The denser the graph is, the longer time it
takes for these algorithms to find its Max-Cut.
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Based on all the observations above, given a graph instance, we will select
a dense subgraph and use QAOA to deal with it and classical heuristics to
handle the remaining part. This can help us overcome the difficult part
of the Max-Cut with quantum computation and tackle the easy part with
classical computation, focusing our quantum resources on the hard core of
the problem.

3.2. Performance analysis

Next, we will analyze the performance of the above framework in terms
of approximation ratio and the size of the chosen subgraph (which deter-
mines the number of saved qubits).

Suppose the classical oracle achieves oc-approximation ratio (0 < o <
1), that is, for all choices of s, it is guaranteed to output a solution OPT-REM’(s)
such that

OPTREM'(s) _ (15)
OPT-REM(s)
or equivalently
OPT-REM’(s)
N 16
OPT-REM(s) Fctre (16)

with & > 0. As the classical oracle is unable to find the exact solution, the
QAOA procedure in our framework might not be able to discover the opti-
mal solution, as it now tries to solve the following optimization problem:

max{as + (ac +&)bs}, (17)

where a; = CUTy(s),bs = OPT-REM(s). Suppose the QAOA part solves (17)
in aq-approximation ratio (0 < aq < 1) and produces expected answer Aq,
which means
Aq
max{as + (ac + &)bs}

> 0Q, (18)

then we have

Lemma 1 (Approximation ratio lower bound). When we use coupling frame-
work with og-approx QAOA and o.c-approx classical algorithm, the approxi-
mation ratio for the overall method o.cq satisfies

aco > do- (1+(occ— 1)%), (19)

where a; = CUT((s),bs = OPT-REM(s).
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Proof.
AqQ

%cq :maxs{as+bs} 20
_ AqQ ~max{a, + (0c + &)bs} @1
max{as + (o + &)bs} maxg{a;+ by}
>0 max{a; + (o¢c + &)bs } 22)
- maxg{a;+ by}
'maxs{as-i—occbs} 23)
- maxg{as + by}
o - maxg{as + by} + ming{(0c — 1)bs} 24)
- maxg{as + by}
~og- 1+ (ac— 1)) @5)

where (24)) is due to ac — 1 being negative so the max operation flips to
min. 0

As the framework embeds a ac-approximation algorithm as a subpro-
gram of an oq-approximation algorithm, the overall approximation ratio
would be lower than aq (otherwise we magically save the number of qubits
with no cost). But as a basic requirement, we need to ensure the overall
framework achieves better performance than the classical algorithm (oth-
erwise we can just use the classical algorithm to solve Max-Cut and dump
the quantum part). The following lemma gives a sufficient condition to
ensure that requirement, namely, ocq > ac.

Lemma 2 (Sufficient condition for quantum advantage). If we select a dense
subgraph of ng vertices satisfying

—”0(”0_1)>1—1<i+ ! ! ) (26)

n(l’l—l) 2 (070) I—CXC_(XQ(I—Oﬂc)

then cqQ > Oc.

To prove the lemma above, we need the following proposition.
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Proposition 1 (Number of edges in a random subgraph). For a graph G =
(V,E), when we select a random subgraph Gy = (Vo,Ep) with |Vp| = ng, we

have ( N
no-\ng—
Ey|)=E|- ————=. 2
B(1Eo) = |- @7)
Proof. There are ( o ) subgraphs sized ny.
For each edge, it is included in a subgraph if and only if the subgraph
contains its two endpoints, so it is included in (72;_22) subgraphs. So the

total number of edges in the ( ;Z) ) subgraphs mentioned above is

o)
giving
B |E|(,Z1():22) B no(no— 1)
E(|Eo|)—W—\E|‘m- (29)

Now we give the proof of
Proof. (of [Lemma 2) To have the right hand side of no less than o,

we need

max{bs} aq—oac 1 1 1

maxs{as+bs} OCQ(l—OC(:) o l—oc OCQ(I —Ot(:).

Meanwhile, we have

max{bs} < |E — Ep|, (30)
S
E
max{as + by} = MAX-CUT(G) > %, (3D
N
maxg{b;} < |E—E0]7 32)
max{as + bs} |£2|

o to ensure 0cq > O, it suffices to satisfy

E—E| 1(1 1 1
| 0|<—<—+ - ) (33)

|E| 2\oagq l—ac ag(l—ac)
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that is,

|Eo| {1 1 1
—>1—= — — . 34
|E| 2\ aq * l—oc ag(l—oc) (34)

From [Proposition 1}, we can obtain a lower bound for |Ey|/|E| that is related
to ng, because since we have the expected number of edges for a random

subgraph with n( vertices, we can assert there are comparatively denser
subgraphs with at least E(|Ey|) edges. We can find such a subgraph easily,
then we have

(no—1) N |Eol _ mo(no—1)

n=1) B = n(n=1) (35)

no
|Eol > |E]-
n

Thus, to keep acq > ac to remain advantage over the classical algorithm,
it suffices to ensure

—”0(”0_1>>1—1(i+ ! ! ) (36)

nin—1) 2lag  1—ac aq(l—oc)
0

We observe the right-hand side of is considerably small, see
For example, if the classical approximation ratio oc = 0.89 and the

aq % | 085 087 089 091 093 095 097 0.99
0.85 1.0

0.87 092 1.0

0.89 085 091 1.0

0.91 0.78 083 09 1.0

0.93 071 075 0.8 0.88 1.0

0.95 0.65 068 071 077 085 1.0

0.97 0.59 0.6 063 066 071 079 1.0
0.99 0.53 053 054 055 057 06 0.66 1.0

Table 3: The value oflf%(i+ 1 1 7+)>

QAOA approximation ratio ag = 0.95, then 1 — % <O:_Q + 1_105C _ aQ(ll—ac)> =
0.71 and no/n approaches 85% as n scales up, which means we can save
up 15% qubits. This result will help us extend the power of quantum opti-
mization to graphs whose sizes are larger than the quantum computer we

have, see the following illustrative plot Given a certain quantum
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device of ng qubits which is used to solve Max-Cut on larger graphs, the
approximation ratio will drop bit by bit as the graph size increases, until it
reaches the point where the approximation ratio is no longer better than
the classical algorithm. This point, denoted by maxn, is the maximum prob-
lem size that can be solved with this device using our framework. And An,
the difference between maxn and ny, is the maximum amount of qubits that
can be saved.

o)
= aq
= our method
.S ' IS LA
S g L LT
g
=
o
g,
= An
a :
| |
0 no maxn i
graph size

Figure 4: An illustration of the effect of our method.

A trivial case: ac= 3

There is a trivial approach that takes the spirit of the naive algorithm
mentioned in which achieves %-approximation on OPT-REM
problem. When a color of V; is fixed to sy, we can just uniformly and
independently color each vertex in V;. Now we prove that this gives %—
approximation ratio on OPT-REM problem.

Proof. For each edge (xo,y1) € Eo1, it connects two vertices from two parti-
tions xo € Vp,y1 € V;. The x is already colored, and there will be % probabil-
ity that y; is colored differently from x(, making (xp,y;) becomes a cut with
% probability. The argument is similar for edge in E;. Thus the expected
cut size given by this method is then §|E — Ey| > JOPT-REM(so).

0

This % approximation is low, thus having the overall algorithm do better
than ac, as mentioned in is not a decent goal. So we revisit the
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approximation ratio (25] given by the overall algorithm and take o = %,

acq >0q - (1+(ac— 1)%) (37)
=0Q: (1 - 2-mrzi§g:ibs}> (38)
ZaQ~(1—|E|_EfO|):aQ-% (39)
2050%, (40)

giving us a relationship between oicq, 0 and the ratio (ng(no — 1))/ (n(n—1)).
We see that if we want an overall ocq approximation, and given the approx-
imation ratio for QAOA being oy, it is required to have

n()(n() — 1) > ocqQ

nn—1) — oaq (1)

This is in fact a strict constraint. To see this, we set aq to 1 which means
we assume QAOA obtains an accurate solution, then we need

(l’l()(l’l() — 1))/(?1(}1 — 1)) > 0cQ- (42)

Even if the goal is just to achieve 0.9-approximation on Max-Cut (which
is not high considering classical computation achieves 0.878), only a few
qubits can be saved (see col iii). However, it is worth mentioning
that the larger the device is, the more effective this method will be. So
although this trivial ac = % case is not practically meaningful at present, it
may become useful in the future as the quantum computers scale up.

For illustration, we list a table that shows the corresponding largest
problem instance that can be solved on current quantum computers, see
In this table, the ny column stands for the actual number of avail-
able qubits, maxn stands for the maximum problem size that can be solved
with this device using our framework and A indicates the difference be-
tween n and ng. setting | means we want to ensure overall approximation
ratio larger than a¢ assuming QAOA and the classical method have ag
and o¢ approximation ratio, and setting || means we want to ensure over-
all approximation ratio larger than ocq assuming QAOA and the classical
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oQ = 0.97 oaQ = 0.95 ocqQ = 0.9
Approx i. ac =091 iil. 0c =0.89 | ili. oq=1

(setting ) (setting 1) (setting 1)
Device | ny | maxn An | maxn An | maxn An
Maryland 40 49 9 47 7 42 2
Sycamore 53 65 12 62 9 55 2
Zuchongzhi2 66 81 15 78 12 69 3
IonQ 79 97 18 93 14 83 4
Eagle 127 156 29 150 23 133 6
Condor 1121 1379 258 1330 209 1181 60

Table 4: The largest problem instance that can be handled.
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Figure 5: The scaling of the number of saved qubits with respect to the number of available
qubits under different approximation ratio settings.

method have aq and 0.5 approximation ratio. Moreover, a plot showing the
scaling of the number of saved qubits with respect to the number of avail-
able qubits under different approximation ratio settings is given in|[Figure 5

From the figure it is clear that the number of qubits saved grows linearly
with the number of available qubits, and the larger the device is, the more
effective this method will be.

4. Numerical results

This section is composed of two parts. As the previous section assumes
access to an oracle (1I) based on a classical algorithm, we now discuss
how such an oracle might be built. Building such an oracle proves to be

18



1.00 -
0.9950 -
0.99 -

0.98 -

0.97 - LU i " J ' .
0.9643 % e & % x = s
0.96 - ¥ x x* % » i ¥

approximation ratio
*®
.
s
»
* 3
R
®
x
*

0.95 - I ‘

0.94 - —= QAOA coupled local search

QAOA in QAOA
0.93 - —*— Goemans-Williamson
1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

random seed

Figure 6: We generate 24-vertex Erd6s-Rényi graphs with 0.8 connectivity and use 18-qubit
QAOA to solve Max-Cut on them. The blue line (QAOA coupled local search) shows the
approximation ratio given by our method, the orange line (QA0A in QAOA) by the method
in [22]] and the green line (Goemans-Williamson) by Goemans-Williamson algorithm. We
can see from the plot that on most instances our method gives better results. In fact, our
method outperforms the other two in 96 out of the total 100 instances. The three horizontal
lines show the average approximation ratio given by the three methods, and our result is
clearly better. The shaded areas around the lines indicate the standard deviations, which
are 2.627 x 1073 (blue), 9.575 x 1073 (orange) and 8.413 x 103 (green), respectively.

hard as we only allow o(n) space overhead (which is discussed in detail in
the following text), but we point out a possible direction that is supported
by numerical results. For the second part, we propose a heuristic approach
for the classical algorithm and perform some numerical experiments on 24-
vertex Erd6s-Rényi graph using 18 qubits. Our method is compared with
Goemans-Williamson algorithm and previous work [22], and the results are
shown in[Figure 6| We can see that our method with 18 qubits is still able to
outperform Goemans-Williamson algorithm by a lot, and outperforms [22]
most of the time.
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4.1. On implementing the classical algorithm solving OPT-REM
Review the definition of OPT-REM (given in (9))
OPT-REM(sp) = max REM(sp,s]).
s1€{0,1}"

The problem above is a variant of Max-Cut. If we choose V, = 0, then
CUTo (s0,51) = 0 and OPT-REM will degenerate to Max-Cut problem on G;.
Thus, OPT-REM problem is as hard as Max-Cut problem, and in
we demonstrate a polynomial space approximation algorithm that solves
OPT-REM problem with .878 approximation ratio. The algorithm described
in naturally gives rise to a quantum circuit with O(n) auxiliary
qubits — which is not tolerable as our goal is to save qubits. In fact, due to
[36], we know no classical algorithm can break the trivial % approximation
ratio for Max-Cut with o(n) space. Thus, there is no suitable classical algo-
rithm solving OPT-REM that can be straightly implemented on a quantum
circuit to achieve (11). However, we only care about the number of qubits
needed in our framework, which means we can use arbitrary (polynomial)
classical space to prepare for the quantum circuit, which circumvents the
constraint from [36].

When solving OPT-REM, we can do brute force, i.e., enumerating all pos-
sible s; and take the maximum as defined in (9). The brute force method
is inefficient, and we want to do pruning to reduce the search space. Intu-
itively, some s; is unnecessary to be tried. For example, if CUT|(s;) is too
small, then this s; is unlikely to be selected as the optimal choice for any
so. We then give the following definition:

Definition 1 (a-guarantee set). For arbitrary fixed approximation ratio re-
quirement o, there is a set T C {0,1}" such that

ma)T(REM(so,sl)
v 0,10 f1€ > a. 43
s0 € {0, 1}, OPT-REM(sg) (43)

We call such set T an o-guarantee set.

We ask, what is the minimum number of s; elements that a a-guarantee
set should contain? This problem is important because a small a-guarantee
set straightly leads to an efficient optimization workflow (described in
[tion 4.1)). We manage to show numerically that for Erd6s-Rényi graph con-
sidered in this work, an a-guarantee set is considerably small. Our work-
flow is as follows: for a fixed graph, instead of finding T satisfying
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Figure 7: (a) The increment of |Ty| with n = 35,n = 28, = 0.9, averaged over 20 ran-
dom Erdés-Rényi graphs and 20 random permutations. A straight line (gray) is added for
reference. (b) The concentration of |Ty| for fixed graphs and |U|, respectively generated
using graphs with random seeds 0 and 1. The solid line indicates the average size of |Ty|,
while the shaded area shows the minimum and the maximum of |7y | over all samples and
graphs.

directly, we select a subset U of {0,1}" and use an inefficient brute-force
algorithm to search for 7y such that

max REM(s0,51)

S

Vso €U, =2 > a. (44)
OPT-REM(s0)

By gradually grow U to {0, 1}"1, we see that the |T;/| we obtain grows almost
linearly with log|U]|, see This slow speed of scaling indicates
that an a-guarantee set should a have polynomial size with respect to n;.

Moreover, we also observe, that for a fixed graph, when we compute Ty
for different U of the same size, |7y |s display signs of concentration, as seen
in This concentration suggests that when we add elements
into U one by one, |Ty| grows following an almost identical speed to a final
result, regardless of the order of elements added. This phenomena also
supports that |7y | grows linearly with log|U|. Details on the methodologies
of computing Ty and more numerical results are given in

Now we will further support our assertion that o-guarantee sets are
small by providing some analysis for large Erdés-Rényi graphs , as shown
in the following lemma:
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Lemma 3 (a-guarantee set size for large Erdds-Rényi graphs). For large
random Erdds-Rényi graphs and no, o satisfying " > » then with high
probability we have an a-guarantee set of size 2.

a}

See for a detailed proof. This result states for Erd6s-Rényi
graphs, if no/n is sufficiently large, the a-guarantee set size is a constant
regardless of the graph size. This provides strong evidence that the a-
guarantee set will be small for graphs with much symmetry. But our current
result only applies to Erdés-Rényi graphs and large ng/n, and it is of great
interest to generalize the results to other graph ensembles which, along
with how to efficiently find a small a-guarantee set for arbitrary graphs,
remains for future work to tackle.

QAOA circuit based on o-guarantee set
With an a-guarantee set 7, the approximate solution to OPT-REM will
hence be
OPT-REM’(sg) = grllél)T(REM(so,sl) (45)
Assuming QAOA achieves approximation ratio oq, then we are promised
to obtain a cut solution with a size of at least

aq - CUT( OPT-REM 46

o, s Lt sorrnsac) 0

:aQ-< max {CUTo(s0)+maxREM 50,51 }) 47)
soe{O,l}”O

= CUT( REM( 48

?llél)T({(XQ soer?oai(}”o{ 0(s0) + (0,1 }} (48)

The equation above suggests we can fix s; and solve

CUTy( REM(sp, 49
5, LT 0) R (.51 @)
_CUTl(Sl)—i— I?Oai(} {CUT() S())—I—CUT()l(S(),Sl)} (50)
NS

and take the maximum output overall s;. And the optimization

max {CUTo(sg) + CUTo (s0, 51
i 0To0) 0.} 2
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Figure 8: (a) Overall workflow. From the original 20-vertex graph shown in i, we select a
15-vertex dense graph, which is colored blue in ii. There exists a .878-guarantee set with 4
elements and is represented with unfilled and filled orange vertices in iii. Based on these
4 elements, we can generate 4 QAOA circuits that look like (b), and running optimization
separately gives us 4 possible solutions in iv, from which we take the first solution, being

the optimum, as our final solution. (b) The circuit for |so) > e~ (CUTo(so) +REM(s0.s1)) g
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can also be tackled with QAOA, which gets at least oq of the optimum.
Thus, we can use QAOA to approximately solve for all s; € T, and take
the maximum answer. The procedure described above achieves solutions
no worse than (48), meaning that this multiple QAOA procedure shares
the same performance guarantee with the previous procedure described in
Section 3| using one single QAOA. The overall procedure is demonstrated
using an example in

Now it remains to show how to solve with QAOA. That is, we will
need to implement

Is0) e 1% (CUTo(s0)+CUTo1 (s0,51)) 150 (52)

The first part is easy, and it can be done with [Figure 1(b)| as we have
discussed before. For the second part, we use so(u«) to denote the color of

vertex u in s, and s;(v) for the color of vertex v in s, then

CUT01<S0,S1)= Z [SO(M)#SI(V)]

(uvv)EEOI

=Y Y () =sow). (53)

ucVy veVin
(u,v)€Eqp

For convenience, let A, /i (u € Vo) be the contribution from (u,v) € Eo1 (v €
V1) to cut when u is colored 0/1, i.e.,

Agon = Y, Isi(v)=1/0], (54)
veEVIA
(M,V)EE()]
then
CUTOI(S(),Sl) = Z A%SO(M)' (55)
ueVy

So, for the u-th qubit with state 0/1, we need to add a phase factor e ~%4wo/1,
This can be done with a single R; gate. Therefore, the overall circuit for
as a part of the QAOA for solving would look like
This circuit consists of only CNOT and Ry gates and, therefore remains
NISQ-friendly. We can see from the analysis above, analogous to the orig-
inal Max-Cut problem (7)), problem has a similar Hamiltonian repre-
sentation

Z (Au,l _AM,O)ZM + Z ZuZVa (56)

ueVp (u,v)EEp
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which consists only of one-local and two-local terms.

For a a-guarantee set T, the method described in this section requires
|T| runs of QAOA optimization. Hopefully, for graphs with certain proper-
ties, we can theoretically derive that there exists T such that |T'| € poly(n),
but even if no theoretical bound can be estimated, a practically acceptable
size will still be enough. So it will be of significant interest to design a
practical algorithm that constructs a moderate-size T, with or without a
polynomial bound for its size.

4.2. A heuristic approach based on local search

Algorithm 3: Coupling QAOA with local search
Data: A graph G = (V,E).
Function QAOASolve(s;):
H <+ the Hamiltonian defined by (56);
return maxg  (3,7|H|3,7);
Find a dense subgraph Gy = (Vy, Ep) for G;
s1 < an initial coloring for V;;
¢ <QAO0ASolve(sy);
while true do
forveV, do
s < s1 with the color of v fliped;
¢’ < QADASolve(sy);
ry < (c,s));
end
(c,s}) « maxr;
if ¢/ > ¢ then
‘ (c,81) < (Clvsll);
else
| break;
end
end
return c;

In order to demonstrate the viability of our coupling framework for
QAOA circuit design, we set up experiments to show its performance when
it is applied to real Max-Cut instances. As pointed out in previous sec-
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tions, currently we are not able to efficiently construct a-guarantee set as
required, so a heuristic method needs to be devised.

Here we give a heuristic method that converges in polynomial time and
demonstrate its numerical results compared with previous methods. Our
method is to first fix a coloring s of V;, and update the chosen s; following a
local search scheme to gradually reach a good result. The overall structure
of our heuristic method will look like

We also tested the algorithm proposed by [22] for comparison. We
strengthen that [22] is able to split the graph arbitrarily so it is able to
solve larger Max-Cut instances using small-scale quantum computers, but
here we only consider such occasions that the number of qubits is slightly
smaller than the graph size, and we demonstrate that our method has the
potential to make better use of such amount of available qubits. The nu-
merical results are shown in [Figure 6

Scaling performance
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Figure 9: Scaling performance of our method. For increasing n, we use %n (%n) qubits to
solve Max-Cut problem on 1000 Erdés-Rényi graph instances, assuming QAOA achieves
an approximation ratio aq. The thick dash shows the average approximation ratio, and
the shaded area shows the density distribution of the approximation ratio. We can see
from the plot that the overall approximation ratio is promising and stable even at large-
scale problems, indicating that our framework may well extend quantum advantage to
problems whose sizes are larger than number of available qubits.

In order to show the scaling performance of our coupling method, we

provide some more numerical experiments on various graph sizes. Note
that as the cost of QAOA simulation and parameter optimization is really
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high, in this section, we just assume that QAOA achieves some certain ap-
proximation ratio ¢ in our numerical experiments. In other words, we do
not perform QAOA simulation and parameter optimization, but just return
0q times the optimum solution when given a problem Hamiltonian. This
will allow us to perform larger-scale experiments faster, giving us more
sufficient statistical data. The results are shown in [Figure 9

5. Summary and discussion

In this work, we propose a coupling framework for QAOA circuit design
and demonstrate it using Max-Cut as an example. Our method replaces
a certain portion of quantum computation with classical computation to
save quantum resources at the expense of losing a bit of approximation
performance.

Our method relies on an efficient quantum-implementable classical al-
gorithm that approximately solves the OPT-REM problem defined in (9). As
the problem is as hard as Max-Cut and the classical algorithm can only con-
sume o(n) qubits when implemented as a quantum oracle, currently we are
not able to design a classical algorithm as required, but we present some
numerical observation that will lead our way towards a possible solution.
However, despite designing a required algorithm with a theoretical guar-
antee being hard, we give a heuristic method inspired by the local search
algorithm. Numerical experiments show good performance which suggests
our coupling framework might be able to help give more satisfactory solu-
tions to larger Max-Cut problem instances using currently limited number
of qubits. Future work remains to design a classical algorithm that solves
(©) with rigorous analysis and performance guarantee.

Moreover, our framework applies not only to Max-Cut problem. In
[37, [38], the Ising formulations of many hard problems are given, which
enable us to solve them using quantum adiabatic algorithms and QAOA. It
is an interesting direction for future work to explore the applications of our
framework to other combinatorial optimization problems. For problems
with similar structures to Max-Cut, such as number partitioning, we expect
a straightforward generalization. For other problems, the generalization
would be more non-trivial but still possible.
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6. Data and code availability

The datasets and the source code that generates them are available at
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Appendix A. Methodologies to obtain a a-guarantee set

This section describes the methodology to obtain a «-guarantee set
in our numerical experiments. Consider the process of constructing a «-
guarantee set 7. For each sy € {0,1}", if it is added to a set T, it will be
able to ensure that all elements in a certain set COVERy(s1) C {0, 1} meet
the approximation requirement, namely,

REM
COVERq(s]) := {so : M

" OPT-REM(s50) = a}. (A1)

Thus, our goal of constructing a a-guarantee set can be reformulated as
the well-known set-covering problem.

Definition 2 (Candidate set search problem). Given 2" subsets

{COVERq(s1) }5 {0,111

of U C {0,1}", we’d like to construct a minimum set T C {0, 1}" such that

|J covErg(s1) =U. (A.2)
s1€T

Set-covering is known to be NP-hard [40], and we make use of a greedy
algorithm. Note that this algorithm outputs a solution larger than the op-
timal one, so if the solution |7y | given by this algorithm is small, then the
optimal size can only be smaller.

Algorithm 4: In|U|-approximation set covering

Data: m subsets ¥ = {S| S C U} that guarantee Js. S =U.
Result: Covering set .7 C ¢ that satisfies Uy T =U.
T+ 0;
while UTG? T 7é U do

S* «+ argmaxsex #{S —Urco T };

T« T U{S*}; /* Choose the most profitable subset */
end
return 7;

36



In our numerical experiments, we generate n-vertex Erdés-Rényi graphs
with 0.8 connectivity and select a dense subgraph with ny vertices using
the heuristic algorithm in [41]]. Under such settings, we compute how |Ty|
increases as |U| gradually grows to 2"%0. We first generate a random permu-
tation p of {0,1,2,...,2" — 1}, and for a random graph, we compute the Ty

when U = {P0}7 {p07p1}7 {p07p1»P2aP3}7 (R {p07p17 cee 7]72"0—1}- The proce-
dure above is done for 20 random permutations and 20 random graphs, and

the results for n = 35,ny = 27 are shown in It can be observed
that |7y | seems to grow almost linearly with log |U|, indicating the final |T|
will not be very large.

We change the size of graph, approximation ratio requirement «, and
split ratio ng/n and compute Ty. Experiments under different setups all
give positive results, showing slow (non-exponential) increment of log|7y|
in accordance with |U]|, see [Figure A.10

4 F
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Figure A.10: Supplementary experiments for Ty size. The captions indicate (ng, "2, &, p).

Appendix B. Experiment settings

QAOA circuit for Max-Cut only involves exp(i60X) and exp(i8ZZ) gates,
which is simply element-wise vector multiplication instead of matrix-vector
multiplication under {|+),|—)}*" and {|0),|1)}*", respectively, while the
basis transform between the two bases can be done with fast Walsh-Hadamard
transform [42]]. So here we implement a statevector simulator dedicated to
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QAOA with the help of FWHT, and we use Numba [43] library to achieve
parallel speedup with GPU.

In order to fully present the power of our circuit design and prevent per-
formance loss due to unsatisfactory optimization results given by QAOA,
we want to have a QAOA approximation ratio as close to 1 as possible.
Therefore, we add much redundancy to p, the number of QAOA layers — p
is set to n when we use QAOA to perform optimization over n-qubit prob-
lem instance. More layers means more parameters which leads to better
circuit expressibility, thus we will more likely reach a state with a higher
expectation.

Like many related works, we use BFGS method [44], 45|46, 47] to opti-
mize QAOA parameters for its quasi-Newton nature provides quick conver-
gence rate. We choose the implementation of BFGS via scipy [48] library,
and limit the maximum number of iterations to 100, with other parameters
of BFGS left default. And to avoid getting stuck in abysmal local optima,
we adopt the parameter initialization method given by [12] and set its
hyper-parameter 6r = 0.56.

While implementing our coupling method, we select dense subgraphs
using a heuristic algorithm given in [41]] and partition the graph into two
parts (Vp, V1), and run the algorithm defined in starting with
So = 0. And when implementing [22]], we use the random partition policy
described in the paper and respectively use |Vy|-qubit QAOA and |V;|-qubit
QAOA to solve Max-Cut inside the two subgraphs, and numerically com-
pute the expected output according to the two resultant probability distri-
butions. When implementing [22], the parameters are changed to have
better optimization performance: we set p = 2n and iteration limit of BFGS
to 500 up to try to decrease the performance loss of [22] due to the inaccu-
racy of QAOA.

When testing the performance of Goemans-Williamson algorithm, we
use the SDP solver provided in MOSEK [49], wrapped with cvxpy [50]
package.

Appendix C. Approximation algorithm solving OPT-REM problem

When polynomial space (instead of only logarithmic) is allowed, OPT-REM
problem can be approximately solved using a modified version of Goemans-
Williamson algorithm, enjoying the same .878 approximation guarantee.
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But note that this algorithm requires Q(n) space, thus it cannot be straightly
used in constructing (1IJ).

We first review the workflow of Goemans-Williamson algorithm. Max-
Cut has the following standard QUBO (Quadratic unconstrained binary op-
timization) formalism

1—c. -
max Z M:czzl ) (C.1D

Goemans-Williamson algorithm uses unit real vectors x, € R" to approxi-
mate c,, relaxing (C.I) as

l—x, -
maxq Y M:||:cu||2:1 . (C.2)

Consider a matrix M with entries defined as M, := (x,|x,), then it is known
that M is positive semidefinite. Moreover, for any positive semidefinite M,
there exists {x,} satisfying M,, := (x,|x,). Thus, there is a one-to-one
correspondence between {z, : ||x,||> = 1} and {M : M,,, = 1}. Now let L be
the Laplacian matrix of the graph with entries defined as

deg(u), u=v,
Ly =< —1, (u,v) €E, (C.3)
0, otherwise,

where deg(u) means the degree of u, then,

t LM
r Z ZLuv Ly - mv
uEVVGV
Z 2.2, Ty
(u,v)€E
l—w - T
Z 1= &y Ty
u,v)€E

From the discussion above, (C.I) is relaxed to the following SDP formula-
tion:
rj‘?%{tr(LM)M My =1}, (C.4)
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From (C.4), we can get the optimal {x,}, after which we select a random
hyperplane through the origin, separating {x,} into two sets, which forms
a cut.

Lemma 4 ([23, Theorem 3.3]). For an arbitrary set of {x,}, the expected
size of the cut obtained by separating the set using a random hyperplane is at
least .878 times tr(LM) /4.

As (C.4) is a relaxation of Max-Cut (C.1)), the optimal tr(LM)/4 will be
no less than Max-Cut. This fact along with implies

Lemma 5. Goemans-Williamson algorithm has .878 approximation ratio on
Max-Cut problem.

To approximately solve the modified version of Max-Cut, OPT-REM, only
a slight amendment to the described Goemans-Williamson algorithm is re-
quired. In OPT-REM, for some vertices, their colors are antecedently as-
signed, so we fix their {x,} vectors in advance. For vertices that are as-
signed different colors, we need to make sure their corresponding vectors
appear at different sides of the random hyperplane. To do this, we fix the
vectors so that if two vertices have different colors, their corresponding
vectors point to opposite directions. One possible choice is

- ::{(4—1,0,...,0), color of u is 0, (C.5)

(—1,0,...,0), colorof uis 1.

Under such configuration, the entries of M are subject to further constraints.
We use z to denote an arbitrary vertex whose vector is not fixed, and let the
vertices whose colors are fixed 0 be x1,x,,...,x, and the vertices whose col-
ors are fixed 1 be y;,y,,...,y;, then for each z,

My, —My,,, =0 (V1<i<a—1), (C.6)
My, —M,, , =0 (V1<i<b-1), (C.7)
M, + M, =0. (C.8)
And,
My, =—1 (V1<i<a,1<j<b). (C.9)

Then we solve (C.4)) under the additional constraints above. Similar to the

reasoning towards [Lemma 5| we have [Lemma 6
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Lemma 6. The modified Goemans-Williamson algorithm described in this sec-
tion have .878 approximation ratio on OPT-REM problem.

The existence of an efficient classical non-trivial approximation algo-
rithm solving OPT-REM suggests that this problem, non-rigorously speaking,
has close difficulty to the original Max-Cut problem.

Appendix D. Analyzing T size for Erd6s-Rényi graphs

In this section, we give an elementary proof for Remember
we want to construct a set T satisfying

max REM (s, 51)
s1€T

OPT-REM(s0)

Vso € {0, l}no,

We will start by showing a warm-up case where the graph is a complete
bipartite graph, where the optimal T is trivial. Then, we will show that
this trivial solution applies to random bipartite graphs where each pair of
vertices is connected by an edge with probability p, which can somehow be
named Erdds-Rényi bipartite graph. At last, we will show for (large) Erdés-
Rényi graphs, the trivial solution can also achieve good performance if “2
is large enough, because that the contribution from cuT; is comparatively
small.

Appendix D.1. Warm-up: complete bipartite graph

Assume we have a complete bipartite graph G = (VoUV},Vp x V), and
consider if we want to construct 7 that satisfying (43).

Figure D.11: An example of a complete bipartite graph. We should color all vertices in V)
black since there are more white vertices in V.
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First, we look at elements in {0,1}" independently and see how to
compute its corresponding optimal coloring in {0, 1}". For a coloring so €
{0,1}" of vertices in Vj, assume there are r vertices colored black, and
accordingly, there are ny —t vertices colored white. Then for each vertex
v €V, if it is colored black, it will contribute ny — ¢ to the cut value, and ¢
otherwise. Therefore, we simply compare ¢t with ny —¢, and color vertices
in V; all black or all white, which is indeed the optimal solution, i.e.,

OPT-REM(sg) = max{t,ny —t} - nj. (D.1)

Through the argument above, we can see that if we want a T satisfying
(43), we can simply set T = {0®"1,1%"1 } and this will give us a 1-guarantee

set with |T| = 2. See [Figure D.11|for reference.

Appendix D.2. Partial Erdds-Rényi graph

Consider a graph G = (VoUV|,EgUE| UEy;), where Ey C Vo x Vp, E| C
Vi x Vi, Eg1 C Vo x V. And for arbitrary set S and probability p, we define a
subset T ~ ER,(S) if each element in S is included in T independently with
probability p. Then for Erdés-Rényi graph,

Ey~ ERP({(u,v) S (u,v) € Vo x Vo,u < v}),

Er~ERy ({(wv): (,v) € Vi x Vi,u<v}), (D.2)
E01 ~ ERP(VO X Vl).

In this section, we first consider the following graph ensemble, which will
later be referred to as partial Erdés-Rényi graph:

Ey is arbitrary,
E; =0,
Eop ~ ERP(V() X Vl).

Similarly, we consider a coloring of Vj), and assume there are ¢ vertices col-
ored black, and accordingly, there are ny —r vertices colored white. As a
consequence of Erdés-Rényi property, for each vertex v € Vj, its neighbor-
ing vertices in Vy have p -t black vertices and p - (ny —t) white vertices in
expectation. If there are precisely p -t black and p - (np —t) white vertices,
the case will be analogous to what we have argued in the previous sec-
tion: simply compare ¢ with ny —r and color vertices in V; all black or all
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white accordingly. Now we will argue, that this simple strategy still applies
despite the graph being random.

Lemma 7 (1 — e-guarantee set for partial Erdés-Rényi graph). For partial
Erdds-Rényi graph and Ve > 0,

w.hp T ={0%% 19"} isa 1 — e-guarantee set.

Proof. Still, assume there are ¢ black vertices and ny —t white ones in Vj.
Then Vi € V;, we let B;,W; be the number of black and white vertices con-
nected to i, respectively. By definition,
B; ~Bionomial(z, p), (D.3)
W; ~ Bionomial(ng —t, p). (D.4)

Then, the overall approximation ratio will be

Y. Bi
Y, max{B; Wi}

(D.5)

For arbitrary approximation ratio requirement o, we want to upper bound
the probability where the approximation ratio is smaller than «. First note
that

Aa+b
Va,b,A >0, max{a,b} > /'La—i——FI ) (D.6)
Then we have y B y B
iDi < 2 (D.7)
X max (B, Wi} ., 2BV,
and it suffices to upper bound
Y. Bi
P W < (D.8)
L A+1

:p((z(l—a)—kl)ZBi—aZWi<O>. (D.9)

From the properties of binomial distribution, we have

B := ZB,- ~ Bionomial(n; -t, p), (D.10)
W::ZWiw Bionomial(nl-(no—t),p), (D.11D)
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then (A(1—a)+1)B — oW can be made arbitrarily large once o < 1 and
B # 0. Specifically, let Ay = %, then

IP’((/’\O(l —a)+1)B—aW < o) (D.12)
<P(B=0)= (”5’) (1 pym (D.13)
=(1—p)™". (D.14)

That is, if there are r black vertices and ny —¢ white vertices in V}), the
probability that the approximation ratio is smaller than « is upper bounded
by (1 —p)™".

Finally, we enumerate the number of black vertices in V; and employ
union bound, and obtain that for all colorings of V;), the probability where
the approximation ratio is smaller than « is upper bounded by

2 i (";))(1—,;)"1’ (D.15)
T
ny eny t o
<2 Z ( . ) (1-p) (D.16)
Sl
=2 ZO: exp(t(l—i—logno+n110g(l—p)—logt)) (D.17)
SE
< Y exp(l(l+logno+nllog(1—p))>. (D.18)
o]
(D.19)
Now we look at
1 +1logng+n;log(1—p), (D.20)

which is clearly dominated by the negative polynomial term n;log(1— p).
Let k := ng/n, then we have

Y., Bi
P(ZimaX{BiaVVi} = a)
<nexp (@ -n*log(1 - p) +0(”2)> ;

(D.21)
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meaning that the probability where the approximation ratio is smaller than
o is exponentially small in 7. O

Appendix D.3. (Large) Erdds-Rényi graph

Now we consider the general case where E| is not empty and defined as
(D.2). We still analyze the approximation ratio given by 7 = {0%™" 19™},
From we can see if we neglect the edges in E|, the optimal cut
given by edges in Ey; can be written as B/(1 — ¢€) for an arbitrarily small
€ > 0. And if we neglect the edges in Ey;, the optimal cut given by edges in
E) is Max-Cut of an Erdés-Rényi graph G, = (V|,E]). So the joint optimal
cut in E; UEy, is upper bounded by B/(1 — &) + MAX-CUT(G}). Therefore,
the approximation ratio is lower bounded by

B
B/(1—¢)+Max-Cut(Gy)

(D.22)

Now we will use the fact that B and MAX-CUT(G) are both in fact concen-
trated.

Lemma 8 (Concentration of binomial distributions). For X ~ Bionomial(n, p),
we have
P<|X—pn| §n0'6> =o(1). (D.23)

Proof. Using the Hoeffding’s inequality;,
a2
]P(X < pn—n0'6> <exp| —2-— | =o(1), (D.24)
n

and the full inequality can be derived from the symmetry of binomial dis-
tribution. O

For B, as a consequence of we have with high probability,

B > pnyt — (n11)*° (D.25)
B < pnit+ (nlt)0'6. (D.26)

For MAX-CUT(G)) [51]], we have w.h.p,

MAX-CUT(G;) = n; (%4—0(”1)), (D.27)
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meaning that A, A; s.t.
MAX-CUT(G}) < my (% + lln}_’b) (D.28)

Combining two concentration results, we have w.h.p

B
B/(1 - €) +Max-CUT(G) (D.29)
0.6
g Ptz (D.30)
(it + (10 (1 — ) 4y (2524 Al )
__ (-gto) o)

(1+(1-e)3) +o(1)

To have the above ratio larger than « in the limit of large n, it suffices to
require

ni 1

— < ——=1 D.32

4 " a ( )
then as ¢ > 7, finally we need

., % (D.33)

n 22—«

In other words, this result says if we have determined ny/n := k, then triv-
ially set T = {0®", 19"} gives us a a-guarantee set with o = 2k/(k+1).
This result suggests that Erdos-Rényi graphs could have a small candidate
set T that gives a good approximation ratio.
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